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Abstract

We present a novel neural surface reconstruction method, called NeuS, for recon-
structing objects and scenes with high fidelity from 2D image inputs. Existing
neural surface reconstruction approaches, such as DVR [Niemeyer et al, 2020]
and IDR [Yariv et al., 2020], require foreground mask as supervision, easily get
trapped in local minima, and therefore struggle with the reconstruction of objects
with severe self-occlusion or thin structures. Meanwhile, recent neural methods
for novel view synthesis, such as NeRF [Mildenhall et al., 2020] and its variants,
use volume rendering to produce a neural scene representation with robustness of
optimization, even for highly complex objects. However, extracting high-quality
surfaces from this learned implicit representation is difficult because there are
not sufficient surface constraints in the representation. In NeuS, we propose to
represent a surface as the zero-level set of a signed distance function (SDF) and
develop a new volume rendering method to train a neural SDF representation. We
observe that the conventional volume rendering method causes inherent geometric
errors (i.e. bias) for surface reconstruction, and therefore propose a new formula-
tion that is free of bias in the first order of approximation, thus leading to more
accurate surface reconstruction even without the mask supervision. Experiments
on the DTU dataset and the BlendedMVS dataset show that NeuS outperforms the
state-of-the-arts in high-quality surface reconstruction, especially for objects and
scenes with complex structures and self-occlusion.

1 Introduction

Reconstructing surfaces from multi-view images is a fundamental problem in computer vision and
computer graphics. 3D reconstruction with neural implicit representations has recently become
a highly promising alternative to classical reconstruction approaches [31, 6, 2] due to its high
reconstruction quality and its potential to reconstruct complex objects that are difficult for classical
approaches, such as non-Lambertian surfaces and thin structures. Recent works represent surfaces
as signed distance functions (SDF) [39, 42, 14, 18] or occupancy [24, 25]. To train their neural
models, these methods use a differentiable surface rendering method to render a 3D object into
images and use the rendered images to compare against input images for supervision. For example,
IDR [39] produces impressive reconstruction results, but it fails to reconstruct objects with complex
structures that causes abrupt depth changes. The cause of this limitation is that the surface rendering
method used in IDR only considers a single surface intersection point for each ray. Consequently,
the gradient only exists at this single point, which is too local for effective back propagation and
would get optimization stuck in a poor local minimum when there are abrupt changes of depth on
images. Furthermore, object masks are needed as supervision for converging to a valid surface. As
illustrated in Fig. 1 (a) top, with the radical depth change caused by the hole, the neural network



would incorrectly predict the points near the front surface to be blue, failing to find the far-back blue
surface. The actual test example in Fig. 1 (b) shows that IDR fails to correctly reconstruct the surfaces
near the edges with abrupt depth changes.

Recently, NeRF [23] and its variants have explored to use a volume rendering method to learn a
volumetric radiance field for novel view synthesis. This volume rendering approach samples multiple
points along each ray and perform α-composition of the colors of the sampled points to produce
the output pixel colors for training purposes. The advantage of the volume rendering approach is
that it can handle abrupt depth changes, because it considers multiple points along the ray and so
all the sample points, either near the surface or on the far surface, produce gradient signals for back
propagation. For example, referring Fig. 1 (a) bottom, when the near surface (yellow) is found to
have inconsistent colors with the input image, the volume rendering approach is capable of training
the network to find the far-back surface to produce the correct scene representation. However, since it
is intended for novel view synthesis rather than surface reconstruction, NeRF uses volume rendering
to learn only a volume density field from which it is difficult to extract a high-quality surface. Fig. 1
(b) shows a surface extracted as a level-set surface of the density field computed by NeRF. Although
the surface correctly accounts for abrupt depth changes, it contains conspicuous noise in some planar
regions.

Reference Image IDR OursNeRF
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Figure 1: (a) Illustration of the surface rendering and volume rendering. (b) A toy example of
bamboo planter, where there are occlusions on the top of the planter. Compared to the state-of-the-art
methods, our approach can handle the occlusions and achieve better reconstruction quality.

In this work, we present a new neural rendering scheme, called NeuS, for multi-view surface recon-
struction. NeuS uses the signed distance function (SDF) for surface representation and uses a novel
volume rendering scheme to learn a neural SDF representation. Specifically, by introducing a density
distribution induced by SDF, we make it possible to apply the volume rendering approach to learning
an implicit SDF representation and thus have the best of both worlds, i.e. an accurate surface represen-
tation using a neural SDF model and robust network training in the presence of abrupt depth changes
as enabled by volume rendering. Note that simply applying a standard volume rendering method
to the density associated with SDF would lead to discernible bias (i.e. inherent geometric errors)
in the reconstructed surfaces. This is a new and important observation that we will elaborate later.
Therefore we propose a novel volume rendering scheme to ensure unbiased surface reconstruction in
the first-order approximation of SDF. Experiments on both DTU dataset and BlendedMVS dataset
demonstrated that NeuS is capable of reconstructing complex 3D objects and scenes with severe
occlusions and delicate structures, even without foreground masks as supervision. It outperforms the
state-of-the-art neural scene representation methods, namely IDR [39] and NeRF [23], in terms of
reconstruction quality.

2 Related Works

Classical Multi-view Surface and Volumetric Reconstruction. Traditional multi-view 3D recon-
struction methods can be roughly classified into two categories: point- and surface-based reconstruc-
tion [2, 6, 8, 31] and volumetric reconstruction [5, 3, 32]. Point- and surface-based reconstruction
methods estimate the depth map of each pixel by exploiting inter-image photometric consistency [7]
and then fuse the depth maps into a global dense point cloud [20, 41]. The surface reconstruction is
usually done as a post processing with methods like screened Poisson surface reconstruction [13]. The
reconstruction quality heavily relies on the quality of correspondence matching, and the difficulties in
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matching correspondence for objects without rich textures often lead to severe artifacts and missing
parts in the reconstruction results. Alternatively, volumetric reconstruction methods circumvent the
difficulty of explicit correspondence matching by estimating occupancy and color in a voxel grid
from multi-view images and evaluating the color consistency of each voxel. Due to limited achievable
voxel resolution, these methods cannot achieve high accuracy.

Neural Implicit Representation. Neural implicit representation has recently become a promising
alternative to conventional scene representations, e.g. point cloud, voxel grids, meshes, due to its
continuous nature, which is free of the limitation of finite resolution. This representation has been
applied successfully to shape representation [21, 22, 26, 4, 1, 9, 40, 27], novel view synthesis [33, 19,
12, 23, 17, 28, 29, 36] and multi-view 3D reconstruction [39, 24, 14, 11, 18].

Our work mainly focuses on learning implicit neural representation encoding both geometry and
appearance in 3D space from 2D images via classical rendering techniques. Limited in this scope,
the related works can be roughly categorized based on the rendering techniques used, i.e. surface
rendering based methods and volume rendering based methods. Surface rendering based methods [24,
14, 39, 18] assume that the color of ray only relies on the color of an intersection of the ray with
the scene geometry which makes the gradient only be backpropagated to a local region near the
intersection. Therefore, such methods struggle with reconstructing complex objects with severe
self-occlusions, sudden depth changes and thin parts. Furthermore, it usually requires object masks
as supervision. On the contrary, our method performs well for such challenging cases without the
need of masks.

Volume rendering based methods, such as NeRF[23], render an image by α-compositing colors of the
sampled points along each ray. Since during training, the gradient can be back-propagated to every
sample points, it can handle sudden depth changes and synthesize high-quality images. However,
extracting high-fidelity surface from the learned implicit field is difficult because the density-based
scene representation lacks sufficient constraints its level sets. In contrast, our method combines the
advantages of surface rendering-based and volume rendering-based methods by constraining the
scene space as a density field induced by a signed distance function and applying volume rendering
to train this density-based representation with robustness. UNISURF [25], a concurrent unpublished
work, also learns an implicit surface via volume rendering. It improves the reconstruction quality by
shrinking the sample region of volume rendering during the optimization. Our method differs from
UNISURF in that UNISURF represents the surface by occupancy values and gradually reduces the
sample regions at some predefined steps to make the occupancy value converge to the surface while
our method represents the scene by a signed distance function (SDF) and thus can naturally extract
the surface as the zero-level set of the SDF, yielding better reconstruction accuracy than UNISURF,
as will be seen later in the experiment section.

3 Method

Given a set of posed images {Ik} of a 3D object, our goal is to reconstruct the surface S of the object.
Note that in the paper we only focus on solid objects and scenes. The surface is represented by the
zero-level set of an implicit signed distance function (SDF) encoded by a fully connected neural
network (MLP). In order to learn the weights of this network, we developed a novel volume rendering
method to render images from the implicit SDF and minimize the difference between the rendered
images and the input images. This volume rendering approach ensures robust optimization in NeuS
for reconstructing objects of complex structures.

3.1 Rendering Procedure

Scene representation. With NeuS, the 3D scene of an object to be reconstructed is represented
by two functions: f : R3 → R that maps a point x ∈ R3 to its signed distance to the object, and
c : R3 × S2 → R3 that encodes the color associated with a point x ∈ R3 and a viewing direction
v ∈ S2. Both functions are encoded by neural networks of Multi-layer Perceptron (MLP). The
surface S of the object is represented by the zero-set of its SDF, that is,

S =
{
x ∈ R3|f(x) = 0

}
. (1)

In order to apply a volume rendering method to training the SDF network, we first introduce a
probability density function φs(f(x)), called S-density, where f(x), x ∈ R3, is the signed distance
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function and φs(x) = se−sx/(1 + e−sx)2, commonly known as the logistic density distribution, is
the derivative of the Sigmoid function Φs(x) = (1 + e−sx)−1, i.e. φs(x) = Φ′s(x). In principle
φs(x) can be any unimodal (i.e. bell-shaped) density distribution centered at 0; here we choose the
logistic density distribution for its computational convenience. Note that the standard deviation of
φs(x) is given by 1/s, which is also a trainable parameter, that is, 1/s approaches to zero as the
network training converges. Note that in our method the opacity value α used for volume rendering
depends on the S-density in a new way that differs from the conventional formulation of volume
rendering, which directly uses the given density function as opacity.

Intuitively, the main idea of NeuS is that, with the aid of the S-density field φs(f(x)), volume
rendering is used to train the SDF network with only 2D input images as supervision. Upon successful
minimization of a loss function based on this supervision, the zero-level set of the network-encoded
SDF is expected to represent an accurately reconstructed surface S, with its induced S-density
φs(f(x)) assuming prominently high values near the surface.

Rendering. To learn the parameters of the MLPs of the SDF and the color field, we devise a volume
rendering scheme to render images from the proposed SDF representation and compare the rendered
images with the input images for network supervision. Given a pixel, we denote the ray emitted from
this pixel as {p(t) = o + tv|t ≥ 0}, where o is the center of the camera and v is the unit direction
vector of the ray. We accumulate the colors along the ray by

C(o,v) =

∫ +∞

0

w(t)c(p(t),v)dt, (2)

where C(o,v) is the output color for this pixel, w(t) a weight for the point p(t), and c(p(t),v) the
color at the point p along the viewing direction v. As a weight function, w(t) is required to satisfy
that w(t) ≥ 0 and

∫ +∞
0

w(t)dt = 1.

Requirements on weight function. The key to learning an accurate SDF representation from 2D
images is to build an appropriate connection between output colors and SDF, i.e., to derive an
appropriate weight function w(t) on the ray based on the SDF f of the scene. In the following, we
list the requirements on the weight function w(t).

1. Unbiased. Given a camera ray p(t), w(t) attains a locally maximal value at a surface
intersection point p(t∗), i.e. with f(p(t∗)) = 0, that is, the point p(t∗) is on the zero-level
set of the SDF (x).

2. Occlusion-aware. Given any two depth values t0 and t1 satisfying f(t0) = f(t1), w(t0) >
0, w(t1) > 0, and t0 < t1, there is w(t0) > w(t1). That is, when two points have the same
SDF value (thus the same SDF-induced S-density value), the point nearer to the view point
should have a larger contribution to the final output color than does the other point.

An unbiased weight function w(t) guarantees that the intersection of the camera ray with the zero-
level set of SDF contributes most to the pixel color. The occlusion-aware property ensures that when
a ray sequentially passes multiple surfaces, the rendering procedure will correctly use the color of the
surface nearest to the camera to compute the output color.

Next, we will first introduce a naive way of defining the weight function w(t) and explain why it is
not appropriate for reconstruction before introducing our novel construction of w(t). In fact, we will
show that directly using the standard pipeline of volume rendering would produce an undesirable
bias in surface reconstruction.

Naive solution. To make the weight function occlusion-aware, a natural solution is based on the
standard volume rendering formulation [23] which defines the weight function by

w(t) = T (t)σ(t), (3)
where σ(t) is the so-called the volume density in classical volume rendering and T (t) =

exp(−
∫ t

0
σ(u)du) here denotes the accumulated transmittance along the ray under consideration. To

adopt the standard volume density formulation [23], here σ(t) is set to be equal to the S-density value,
i.e. σ(t) = φs(f(p(t))) and the weight function w(t) is computed by Eqn. 3. Although the resulting
weight function is occlusion-aware, it is biased as it introduces inherent errors in the reconstructed
surfaces. As illustrated in Fig. 2 (a), the weight function w(t) attains a local maximum at a point
before the ray reaches the surface point p(t∗), satisfying f(p(t∗)) = 0. This fact will be proved in
the Appendix.
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Figure 2: Illustration of (a) weight bias of naive solution,
and (b) the weight function defined in our solution, which is
unbiased in the first-order approximation of SDF.

Our solution. To introduce our so-
lution, we first introduce a straight-
forward way to construct an unbiased
weight function, which directly uses
the normalized S-density as weights

w(t) =
φs(f(p(t)))∫ +∞

0
φs(f(p(u)))du

. (4)

This construction of weight func-
tion is obviously unbiased, but not
occlusion-aware. For example, if the
ray penetrates two surfaces, the SDF
function f will have two zero points
on the ray, which leads to two peaks
on the weight function w(t) and the
resulting weight function will mix and
average the colors of two surfaces without considering occlusions due to their order of depth.

To this end, now we shall design the weight function w(t) that is both occlusion-aware and unbiased
in the first order approximation of SDF, based on the aforementioned straightforward construction.
To ensure an occlusion-aware property of the weight function w(t), we will still follow the basic
framework of volume rendering as Eqn. 3. However, different from the conventional treatment of
setting σ(t) = φs(f(p(t))) as in naive solution above, we define our functionw(t) from the S-density
in a new manner. We first define an opaque density function ρ(t), which is the counterpart of the
volume density σ in standard volume rendering. Then we compute the new weight function w(t) by

w(t) = T (t)ρ(t), where T (t) = exp(−
∫ t

0

ρ(u)du). (5)

How we derive opaque density ρ. We will first consider a simple case where there is only one
surface intersection, and the surface is simply a plane. Since Eqn. 4 is indeed correct under this
assumption, we derive the underlying opaque density ρ corresponding to the weight definition of
Eqn. 4 using the framework of volume rendering. Then we will generalize this opaque density to the
general case of multiple surface intersections by the volume rendering technique.

Specifically, in the simple case of a single plane intersection, it is easy to see that the signed distance
function f(p(t)) is −| cos(θ)| · (t− t∗), where f(p(t∗)) = 0, and θ is the angle between the view
direction v and the outward surface normal vector n. Because the surface is assumed locally, | cos(θ)|
is a constant. It follows from Eqn. 4 that

w(t) =
φs(f(p(t)))∫ +∞

−∞ φs(f(p(u)))du

=
φs(f(p(t)))∫ +∞

−∞ φs(−| cos(θ)| · (u− t∗))du

=
φs(f(p(t)))

| cos(θ)|−1 ·
∫ +∞
−∞ φs(u− t∗)du

=| cos(θ)|φs(f(p(t))).

(6)

Recall that the weight function within the framework of volume rendering is given by w(t) =

T (t)ρ(t), where T (t) = exp(−
∫ t

0
ρ(u)du) denotes the accumulated transmittance. Therefore, to

derive ρ(t), we have
T (t)ρ(t) = | cos(θ)|φs(f(p(t))). (7)

Since T (t) = exp(−
∫ t

0
ρ(u)du), it is easy to verify that T (t)ρ(t) = −dT

dt (t). Further, note that
| cos(θ)|φs(f(p(t))) = −dΦs

dt (f(p(t))). It follows that dT
dt (t) = dΦs

dt (f(p(t))). Integrating both
sides of this equation yields

T (t) = Φs(f(p(t))). (8)
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Taking the logarithm and then differentiating both sides, we have∫ t

−∞
ρ(u)du =− ln(Φs(f(p(t))))

⇒ ρ(t) =
−dΦs

dt (f(p(t)))

Φs(f(p(t)))
.

(9)
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Figure 3: Illustration of weight
distribution in case of multiple surface
intersection.

This is the formula of the opacity density ρ(t) in case of
single plane intersection. The weight function w(t) in-
duced by ρ(t) is shown in Figure 2(b). Now we generalize
the opaque density to the general case where there are
multiple surface intersections along the ray p(t). In this
case, −dΦs

dt (f(p(t))) becomes negative on the segment of
the ray with increasing SDF values. Thus we clip it against
zero to ensure that the value of ρ is always non-negative.
This gives the following opaque density function ρ(t) in
the general case of multiple surface intersections.

ρ(t) = max

(
−dΦs

dt (f(p(t)))

Φs(f(p(t)))
, 0

)
. (10)

Based on this equation, the weight function w(t) can be
computed with standard volume rendering as in Eqn. 5.
The illustration in the case of multiple surface intersection
is shown in Figure 3.

The following theorem states that in general cases (i.e.,
including both single surface intersection and multiple surface intersections) the weight function
defined by Eqn. 10 and Eqn. 5 is unbiased in the first-order approximation of SDF. The proof is given
in the Appendix.

Theorem 1 Suppose that a smooth surface S is defined by the zero-level set of the signed distance
function f(x) = 0, and a ray p(t) = o + tv enters the surface S from outside to inside, with
the intersection point at p(t∗), that is, f(p(t∗)) = 0 and there exists an interval [tl, tr] such that
t∗ ∈ [tl, tr] and f(p(t)) is monotonically decreasing in [tl, tr]. Suppose that in this local interval
[tl, tr], the surface can be tangentially approximated by a sufficiently small planar patch, i.e., ∇f is
regarded as fixed. Then, the weight function w(t) computed by Eqn. 10 and Eqn. 5 in [tl, tr] attains
its maximum at t∗.

Discretization. To obtain discrete counterparts of the opacity and weight function, we adopt the same
approximation scheme as used in NeRF [23], which is similar to the composite trapezoid quadrature.
This scheme samples n points {pi = o + tiv|i = 1, ..., n, ti < ti+1} along the ray to compute the
approximate pixel color of the ray as

Ĉ =

n∑
i=1

Tiαici, (11)

where Ti is the discrete accumulated transmittances defined by Ti =
∏i−1
j=1(1 − αj), and αi is

discrete opacity values defined by

αi = 1− exp(−
∫ ti+1

ti

ρ(t)dt), (12)

which can further be shown to be

αi = max

(
Φs(f(p(ti))− Φs(f(p(ti+1)))

Φs(f(p(ti)))
, 0

)
. (13)

This detailed derivation of this formula for αi is given in the Appendix.
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3.2 Training

To learn the NeuS representation, we minimize the difference between the rendered pixel colors and
the ground truth pixel colors, without any 3D supervision. Besides colors, if the ground truth masks
are provided, we can also utilize the mask for supervision.

Specifically, we optimize our neural networks and inverse standard deviation s by randomly sampling
a batch of pixels and their corresponding rays in world space P = {Ck,Mk,ok,vk}, where Ck is its
pixel color and Mk ∈ {0, 1} is its optional mask value, from an image in every iteration. We assume
the point sampling size is n and the batch size is m. The loss function is defined as

L = Lcolor + λLreg + βLmask. (14)

The color loss Lcolor is defined as

Lcolor =
1

m

∑
k

R(Ĉk, Ck). (15)

Same as IDR[39], we empirically chooseR as L1 loss, which in our observation is robust to outliers
and stable in training.

We add an Eikonal term [9] on the sampled points to regularize the SDF of fθ by

Lreg =
1

nm

∑
k,i

(|∇f(p̂k,i)| − 1)2. (16)

The optional mask loss Lmask is defined as

Lmask = BCE(Mk, Ôk), (17)

where Ôk =
∑n
i=1 Tk,iαk,i is the sum of weights along the camera ray, and BCE is the binary cross

entropy loss.

Hierarchical sampling. Like other volume rendering techniques, the strategy of sampling will
significantly influence the final results. In this work, we follow a similar hierarchical sampling
strategy as NeRF [23]. We first uniformly sample the points on the ray and then conduct importance
sampling on top of the coarse probability estimation. The difference is that, unlike NeRF which
simultaneously optimizes a coarse network and a fine network, we only maintain one network, where
the probability in coarse sampling is computed based on the S-density φs(f(x)) with a large fixed
standard deviation while the probability of fine sampling is computed based on φs(f(x)) with the
learned standard deviation.

4 Experiments

4.1 Experimental settings.

Datasets. To evaluate our approach and baseline methods, we use 15 scenes from the DTU
dataset [10], same as those used in IDR [39], with a wide variety of materials, appearance and
geometry, including challenging cases for reconstruction algorithms, such as non-Lambertian surfaces
and thin structures. Each scene contains 49 or 64 images with the image resolution of 1600× 1200.
Each scene was tested with and without foreground masks provided by IDR [39]. We further tested
on 7 challenging scenes from the low-res set of the BlendedMVS dataset [38](CC-4 License). Each
scene has 31− 143 images at 768× 576 pixels and masks are provided by the BlendedMVS dataset.
We further captured two thin objects with 32 input images to test our approach on thin structure
reconstruction.

Baselines. (1) The state-of-the-art surface rendering approach – IDR [39]: IDR can reconstruct
surface with high quality but requires foreground masks as supervision for training; Since IDR has
demonstrated superior quality compared to another surface rendering based method – DVR [24],
we did not conduct a comparison with DVR. (2) The state-of-the-art volume rendering approach –
NeRF [23]: NeRF achieves impressive results in novel view synthesis, however, extracting high-
quality surface is not trivial. We use a density threshold of 25 to extract mesh from the learned
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Figure 4: Comparions on surface reconstruction with mask supervision.

implicit field. We validate this choice in the Appendix. (3) A widely-used classical MVS method
– COLMAP [31]: We reconstruct a mesh from the output point cloud of COLMAP with Screened
Poisson Surface Reconstruction [13]. (4) The concurrent work which unifies surface rendering and
volume rendering with an occupancy field as scene representation – UNISURF [25]. More details of
the baseline methods are included in the Appendix.

w/ mask w/o mask
ScanID IDR NeRF Ours COLMAP NeRF UNISURF Ours
scan24 1.63 1.83 1.15 0.81 1.90 1.32 1.37
scan37 1.87 2.39 0.95 2.05 1.60 1.36 1.21
scan40 0.63 1.79 0.80 0.73 1.85 1.72 0.73
scan55 0.48 0.66 0.39 1.22 0.58 0.44 0.40
scan63 1.04 1.79 1.26 1.79 2.28 1.35 1.20
scan65 0.79 1.44 0.72 1.58 1.27 0.79 0.70
scan69 0.77 1.50 0.69 1.02 1.47 0.80 0.72
scan83 1.33 1.20 0.94 3.05 1.67 1.49 1.01
scan97 1.16 1.96 1.14 1.40 2.05 1.37 1.16

scan105 0.76 1.27 0.77 2.05 1.07 0.89 0.82
scan106 0.67 1.44 0.66 1.00 0.88 0.59 0.66
scan110 0.90 2.61 1.35 1.32 2.53 1.47 1.69
scan114 0.42 1.04 0.39 0.49 1.06 0.46 0.39
scan118 0.51 1.13 0.51 0.78 1.15 0.59 0.49
scan122 0.53 0.99 0.52 1.17 0.96 0.62 0.51

mean 0.90 1.54 0.82 1.36 1.49 1.02 0.87

Table 1: Quantitative evaluation on DTU dataset.
COLMAP results are achieved by trim=0.

Implementation details. Similar to the net-
work architecture of IDR [39], the signed dis-
tance function f is modeled by a MLP that con-
sists of 8 hidden layers with hidden size of 256.
The function c for color prediction is modeled
by a MLP with 4 hidden layers with size of
256, which is conditioned on the spatial loca-
tion p, normal n, and the feature vector from
f . Positional encoding [23] is applied to spa-
tial location p with 6 frequencies and to view
direction v with 4 frequencies. We assume the
region of interest is inside a unit sphere. The
number of coarse and fine sampling is 64 and 64
respectively. For the ‘w/o mask’ setting, we sam-
ple additional 32 points outside the sphere, the
outside scene is presented using NeRF++ [43].
Geometric initialization is used to produce an approximate SDF as proposed in [1]. We sample 512
rays per batch and train our model for 300k iterations for 14 hours (for the ‘w/ mask’ setting) and 16
hours (for the ‘w/o mask’ setting) on a single NVIDIA RTX2080Ti GPU.
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4.2 Comparisons

We conducted the comparisons in two settings, with mask supervision (w/ mask) and without mask
supervision (w/o mask). We measure the reconstruction quality with the Chamfer distances in the
same way as UNISURF [25] and IDR [39] and report the scores in Table 1. The results show that our
approach outperforms the baseline methods on the DTU dataset in both settings – w/ and w/o mask
in terms of the Chamfer distance. Note that the reported scores of IDR in the setting of w/ mask and
NeRF and UNISURF in the w/o mask setting are from IDR [39] and UNISURF [25].
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Figure 6: Comparions on surface reconstruction without mask supervision.

Reference Image Ours UNISURF

Figure 5: Visual comparisons with UNISURF.

We conduct the qualitative comparisons on the
DTU dataset and the BlendedMVS dataset in
both settings, w/ mask and w/o mask, in Figure 4
and Figure 6, respectively. As shown in Figure 4
for the setting of w/ mask, IDR shows limited
performance for reconstructing thin metals parts
in Scan 37 (DTU) and Jade (BlendedMVS), and
fails to handle sudden depth changes in Stone
(BlendedMVS) due to the local optimization pro-
cess in surface rendering. The extracted meshes
of NeRF’s results are noisy since the volume
density field has not sufficient constraint on level
sets of 3D geometry. Regarding the w/o mask
setting, we visually compare our method with
NeRF and COLMAP in the setting of w/o mask in Figure 6, which shows our reconstructed surfaces
are with more fidelity than baselines. We further show a comparison with UNISURF [25] on two
examples in the w/o mask setting. Note that we use the qualitative results of UNISURF reported their
paper for comparison. Our method works better for the objects with abrupt depth changes. More
qualitative images are included in the Appendix.
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4.3 Analysis

Ablation study. To evaluate the effect of the weight calculation, we test three different kinds of
weight constructions described in Sec. 3.1: (a) Naive Solution. (b) Straightforward Construction
as shown in Eqn. 4. (d) Full Model. As shown in Figure 7, although reconstruction geometry of
naive solution looks plausible, the quantitative result is worse than our weight choice (d) in terms
of the Chamfer distance. This is because it introduces a bias to the surface reconstruction. If direct
construction is used, there are severe artifacts.

We also studied the effect of geometric initialization [1]. When the random initialization is used,
artifacts appear at nose and eyes of the skull. More analysis can be found in the Appendix.

Thin structures. We additionally show results on two challenging thin objects with 32 input images.
Note that the plane with rich texture under the object is used for camera calibration. As shown in
Fig. 8, our method is able to accurately reconstruct these thin structures, especially on the edges with
abrupt depth changes. Furthermore, different from the methods [34, 15, 37, 16] which only target at
high-quality thin structure reconstruction, our method can handle the scenes which have a mixture of
thin structures and general objects.

(c) w/o Geo-Init. (d) Full Model Reference Image

Chamfer Distance0.720.871.68

(a) Naive Solution (b) Direct Construction

3.22

Figure 7: Ablation study. The bottom line shows the Chamfer distance between the reconstruction
results and ground-truth model.

(b) COLMAP𝑡𝑟𝑖𝑚 = 10 (c) COLMAP𝑡𝑟𝑖𝑚 = 7(a) OursReference Image

Figure 8: Comparison on scenes with thin structure objects. Left half is the depth map while right
half is the reconstructed surface.

5 Conclusion

We have proposed NeuS, a new approach to multiview surface reconstruction that represents 3D
surfaces as neural SDF and developed a new volume rendering method for training the implicit SDF
representation. NeuS produces high-quality reconstruction and successfully reconstructs objects with
severe occlusions and complex structures. It outperforms the state-of-the-arts both qualitatively and

10



quantitatively. One limitation of our method is that although our method does not heavily rely on
correspondence matching of texture features, the performance would still degrade for textureless
objects (we show the failure cases in the Appendix). Moreover, NeuS has only a single scale parameter
s that is used to model the standard deviation of the probability distribution for all the spatial location.
Hence, an interesting future research topic is to model the probability with different variances for
different spatial locations together with the optimization of scene representation, depending on
different local geometric characteristics. Negative societal impact: like many other learning-based
works, our method requires a large amount of computational resources for network training, which
can be a concern for global climate change.
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- Appendix -

A Derivation for Computing Opacity αi

In this section we will derive the formula in Eqn. 13 for computing the discrete opacity αi. Recall
that the opaque density function ρ(t) is defined by Eqn. 10 as

ρ(t) = max

(
−dΦs

dt (f(p(t)))

Φs(f(p(t)))
, 0

)

= max

(
−(∇f(p(t)) · v)φs(f(p(t)))

Φs(f(p(t)))
, 0

)
,

where φs(x) and Φs(x) are the probability density function (PDF) and cumulative distribution
function (CDF) of logistic distribution, respectively. First consider the case where the sample point
interval [ti, ti+1] lies in a range [t`, tr] over which the camera ray is entering the surface from outside
to inside, i.e. the signed distance function is decreasing on the camera ray p(t) over [t`, tr]. Then it
is easy to see that −(∇f(p(t)) · v) > 0 in [ti, ti+1]. It follows from Eqn. 12 that,

αi =1− exp

(
−
∫ ti+1

ti

ρ(t)dt

)
=1− exp

(
−
∫ ti+1

ti

−(∇f(p(t)) · v)φs(f(p(t)))

Φs(f(p(t)))
dt

)
.

(18)

Note that the integral term is computed by∫
−(∇f(p(t)) · v)φs(f(p(t)))

Φs(f(p(t)))
dt = − ln(Φs(f(p(t)))) + C, (19)

where C is a constant. Thus the discrete opacity can be computed by

αi =1− exp [− (− ln(Φs(f(p(ti+1)))) + ln(Φs(f(p(ti)))))]

=1− Φs(f(p(ti+1)))

Φs(f(p(ti)))

=
Φs(f(p(ti))− Φs(f(p(ti+1)))

Φs(f(p(ti)))
.

(20)

Next consider the case where [ti, ti+1] lies in a range [t`, tr] over which the camera ray is exiting
the surface, i.e. the signed distance function is increasing on p(t) over [t`, tr]. Then we have
−(∇f(p(t)) · v) < 0 in [ti, ti+1]. Then, according to Eqn. 10, we have ρ(t) = 0. Therefore, by
Eqn. 12, we have

αi = 1− exp

(
−
∫ ti+1

ti

ρ(t)dt

)
= 1− exp

(
−
∫ ti+1

ti

0dt

)
= 0.

Hence, the alpha value αi in this case is given by

αi = max

(
Φs(f(p(ti))− Φs(f(p(ti+1)))

Φs(f(p(ti)))
, 0

)
. (21)

This completes the derivation of Eqn. 13.

B First-order Bias Analysis

B.1 Proof of Unbiased Property of Our Solution

PROOF OF THEOREM 1: Suppose that the ray is going from outside to inside of the surface. Hence,
we have −(∇f(p(t)) · v) > 0, because by convention the signed distance function f(x) is positive
outside and negative inside of the surface.
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Recall that our S-density field φs(f(x)) is defined using the logistic density function φs(x) =
se−sx/(1 + e−sx)2, which is the derivative of the Sigmoid function Φs(x) = (1 + e−sx)−1, i.e.
φs(x) = Φ′s(x).

According to Eqn. 5, the weight function w(t) is given by

w(t) = T (t)ρ(t),

where

ρ(t) = max

(
−(∇f(p(t)) · v)φs(f(p(t)))

Φs(f(p(t)))
, 0

)
.

By assumption, −(∇f(p(t)) · v) > 0 for t ∈ [tl, tr]. Since φs is a probability density function, we
have φs(f(p(t))) > 0. Clearly, Φs(f(p(t))) > 0. It follows that

ρ(t) =
−(∇f(p(t)) · v)φs(f(p(t)))

Φs(f(p(t)))
,

which is positive. Hence,

w(t) =T (t)ρ(t)

= exp

(
−
∫ t

0

ρ(t′)dt′
)
ρ(t)

= exp

(
−
∫ tl

0

ρ(t′)dt′
)

exp

(
−
∫ t

tl

ρ(t′)dt′
)
ρ(t)

=T (tl) exp

(
−
∫ t

tl

ρ(t′)dt′
)
ρ(t)

=T (tl) exp [−(− ln(Φs(f(p(t)))) + ln(Φs(f(p(tl)))))] ρ(t)

=T (tl)
Φs(f(p(t)))

Φs(f(p(tl)))

−(∇f(p(t)) · v)φs(f(p(t)))

Φs(f(p(t)))

=
−(∇f(p(t)) · v)T (tl)

Φs(f(p(tl)))
φs(f(p(t))).

(22)

As a first-order approximation of signed distance function f , suppose that locally the surface is
tangentially approximated by a sufficiently small planar patch with its outward unit normal vector
denoted as n. Because f(x) is a signed distance function, locally it has a unit gradient vector∇f = n.
Then we have

w(t) =
−(∇f(p(t)) · v)T (tl)

Φs(f(p(tl)))
φs(f(p(t)))

=
| cos(θ)|T (tl)

Φs(f(p(tl)))
φs(f(p(t))),

(23)

where θ is the angle between the view direction v and the unit normal vector n, that is, cos(θ) = v ·n.
Here | cos(θ)|T (tl) · Φs(f(p(tl)))

−1 can be regarded as a constant. Hence, w(t) attains a local
maximum when f(p(t)) = 0 because φs(x) is a unimodal density function attaining the maximal
value at x = 0.

We remark that in this proof we do not make any assumption on the existence of surfaces between
the camera and the sample point p(tl). Therefore the conclusion holds true for the case of multiple
surface intersections on the camera ray. This completes the proof. �
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B.2 Bias in Naive Solution

In this section we show that the weight function derived in naive solution is biased. According to
Eqn. 3, w(t) = T (t)σ(t), with the opacity σ(t) = φs(f(p(t))). Then we have

dw

dt
=

d(T (t)σ(t))

dt

=
dT (t)

dt
σ(t) + T (t)

dσ(t)

dt

=

[
exp

(
−
∫ t

0

σ(t)dt

)
(−σ(t))

]
σ(t) + T (t)

dσ(t)

dt

=T (t)(−σ(t))σ(t) + T (t)
dσ(t)

dt

=T (t)

(
dσ(t)

dt
− σ(t)2

)
.

(24)

Now we perform the same first-order approximation of signed distance function f near the surface
intersection as in Section B.1. In this condition, the above equation can be rewritten as

dw

dt
=T (t)

(
(∇f(p(t)) · v)φ′s(f(p(t)))− φs(f(p(t)))2

)
=T (t)

(
cos(θ)φ′s(f(p(t)))− φs(f(p(t)))2

)
.

(25)

Here cos(θ) can be regarded as a constant. Now suppose p(t∗) is a point on the surface S, that is,
f(p(t∗)) = 0. Next we will examine the value of dw

dt (t) at t = t∗. First, clearly, T (t∗) > 0 and
φs(f(p(t∗)))2 > 0. Then, since φ′s(0) = 0, we have

dw

dt
(t∗) = T (t∗)(cos(θ)φ′s(0)− σ(t∗)2) = −T (t∗)φs(0)2 < 0.

Hence w(t) in naive solution does not attain a local maximum at t = t∗, which corresponds to a point
on the surface S. This completes the proof. �

C Second-order Bias Analysis

In this section we briefly introduce our local analysis in the interval [tl, tr] near the surface intersection,
in second-order approximation. In this condition, we follow the similar assumption as Section B that
the signed distance function f(p(t)) monotonically decreases along the ray in the interval [tl, tr].

According to Eqn. 24, the derivative of w(t) is given by:

dw

dt
= T (t)

(
dσ(t)

dt
− σ(t)2

)
.

Clearly, we have T (t) > 0. Hence, whenw(t) attains local maximum at t̄, there is
(

dσ(t̄)
dt − σ(t̄)2

)
=

0.

The case of our solution. In our solution, the volume density is given by σ(t) = ρ(t) following Eqn.
10. After organizing, we have

d2f

dt
(p(t̄)) · φs(f(p(t̄))) +

(
df

dt
(p(t̄))

)2

φ
′

s(f(p(t̄))) = 0.

Here we perform a local analysis at t̄ near the surface intersection t∗, where f(p(t∗)) = 0, t̄ = t∗+∆t.
And we let df

dt (p(t∗)) = µ, and d2f
dt2 (p(t∗)) = τ . As a second-order analysis, we assume that in

this local interval t ∈ [tl, tr], d2f
dt2 (p(t)) is fixed. After substitution and organization, the induced

equation for local maximum point t̄ is

τ ·
(

1 + e−s(µ∆t+
1
2 τ∆2

t )
)

= (µ+ τ∆t)
2 ·
(
s
(

1− e−s(µ∆t+
1
2 τ∆2

t )
))

, (26)
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which we will analyze later.

The case of the naive solution. Here we conduct a similar local analysis as in case of our solution.
Regarding naive solution, when w(t) attains local maximum at t̄, there is:

(µ+ τ∆t) ·
(
−
(

1− e−2s(µ∆t+
1
2 τ∆2

t )
))

= e−s(µ∆t+
1
2 τ∆2

t ). (27)

Comparison. Based on Eqn. 26 and Eqn. 27, we can numerically solve the equations on ∆t for any
given values of µ, τ, and s. Below we plot the curves of ∆t versus increasing s for different (fixed)
values of µ, τ in Fig. 9.

𝜇 = −1, 𝜏 = −0.5 𝜇 = −1, 𝜏 = −2 𝜇 = −0.8, 𝜏 = −0.5 𝜇 = −0.5, 𝜏 = −0.5

𝜇 = −1, 𝜏 = 0.5 𝜇 = −1, 𝜏 = 2 𝜇 = −0.8, 𝜏 = 0.5 𝜇 = −0.5, 𝜏 = 0.5

Figure 9: The curve of ∆t versus s, given fixed µ, τ . Note that the axes are illustrated in ln(|∆t|)
and ln(s).

As shown in Fig. 9, the error of local maximum position ∆t = O(s−2) for our solution and the error
∆t = O(s−1) for the naive solution. That is to say, our error converges to zero faster than the error
of the naive solution does as the standard deviation 1/s of the S-density approaches to 0, which is
quadratic convergence versus linear convergence.
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D Additional Experimental Details

D.1 Additional Implemenation Details

Network architecture. We use a similar network architecture as IDR[39], which consists of two
MLPs to encode SDF and color respectively. For the SDF MLP, we replace original ReLU with
Softplus with β = 100 as activation functions for all hidden layers. A skip connection [26] is used
to connect the input with the output of the fourth layer. The color MLP takes not only the spatial
location p as inputs but also the view direction v, the normal vector of SDF n = ∇f(p), and a
256-dimensional feature vector from the SDF MLP. Same as IDR, we use weight normalization [30]
to stabilize the training process.

Alpha and color computation. In the implementation, we actually have two types of sampling
points - the sampled section points qi = o + tiv and the sampled mid-points pi = o + ti+ti+1

2 v,
with section length δi = ti+1 − ti, as illustrated in Figure 10. To compute the alpha value αi, we
use the section points, which is max( (Φs(f(qi)−Φs(f(qi+1)))

Φs(f(qi))
, 0). To compute the color ci, we use the

color of the mid-point pi.

: sampled section point : sampled mid-point

Figure 10: The section points and mid-points defined on a ray.

D.2 Baselines

IDR[39]. To implement IDR, we use their officially released codes1 and pretrained models on the
DTU dataset.

NeRF[23]. To implement NeRF, we use the code from nerf-pytorch2. To extract surfaces from NeRF,
we use the density level-set of 25, which is validated by experiments to be the best level-set with
smallest reconstruction errors, as shown in Table 2 and Figure 11.

COLMAP[31]. We use the officially provided CLI(command line interface) version of COLMAP.
Dense point clouds are produced by sequentially running following commands: (1) feature_extractor,
(2) exhaustive_matcher, (3) patch_match_stereo, and (4) stereo_fusion. Given dense point clouds,
meshes are produced by (5) poisson_mesher.

UNISURF[25]. Since the code of the concurrent work UNISURF has not been released yet, the
quantitative and qualitative results in the paper are provided by the authors of UNISURF.

Scan ID Threshold 0 Threshold 25 Threshold 50 Threshold 100 Threshold 500
Scan 40 2.36 1.79 1.86 2.07 4.26
Scan 83 1.65 1.20 1.37 2.24 29.10
Scan 114 1.62 1.04 1.10 1.43 8.66

Table 2: The Chamfer distances between the ground-truth and the level-set surfaces extracted from
the NeRF results using different threshold values on three scenes from the DTU dataset.
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Threshold 0 Threshold 25 Threshold 50 Threshold 100 Threshold 500
Figure 11: The visualization of the level-set surfaces extracted from the NeRF results using different
threshold values.

E More Experimental Results

E.1 Effect of Geometric Initialization

Although our method can produce plausible results with random initialization, our method with
geometric initialization achieves better quality. As shown in Figure 12, using random initialization
produces axis-aligned artifacts due to the spectral-bias of positional encoding [35] while the geometric
initialization [1] does not have this kind of artifacts.

E.2 Training Progression

We show the reconstructed surfaces at different training stages of the Durian in the BlendedMVS
dataset. As illustrated in Figure 13, the surface gets sharper along the training process. Meanwhile,

1https://github.com/lioryariv/idr
2https://github.com/yenchenlin/nerf-pytorch
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Figure 12: Visualization of signed distance fields on the cutting plane (blue plane of the left image)
in different training iterations.
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Iteration 50000 Iteration 100000 Iteration 200000 Iteration 300000 Curve of Standard Deviation

Reference Image

Figure 13: Training progression of the Durian in the BlendedMVS dataset. The bottom right figure
shows the curve of the trainable standard deviation in the training progress.

we also provide a curve in the figure to show how the trainable standard deviation in φs changes in
the training process. As we can see, the optimization process will automatically reduce the standard
deviation so that the surface becomes more clear and sharper with more training steps.

E.3 Limitation

Figure 14: A failure case
containing textureless regions.

Figure 14 shows a failure case where our method fails to correctly
reconstruct the texutreless region of the inner surface on the right
brick. The reason is that such textureless regions are ambiguous for
reconstruction in neural rendering.

E.4 Additional Results

In this section, we show additional qualitative results on the DTU
dataset and BlendedMVS dataset. Figure 16 shows the comparisons
with baseline methods in both w/ mask setting and w/o mask setting.
Figure 17 shows addtional results in w/o mask setting. Meanwhile,
besides the reconstructed surfaces, our method also produces high-
quality rendered images as shown in Figure 15.

Figure 15: Rendered images by our method on the DTU dataset.
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Figure 16: Additional reconstruction results on the DTU dataset.
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Figure 17: Additional reconstruction results on BlendedMVS dataset without mask supervision.
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